Etude de la réponse des modules optiques du calorimetre SuperNEMO au rayonnement gamma

Axel Pin^{1,2}

¹Centre d'Etudes Nucléaires de Bordeaux-Gradignan UMR5797, CNRS/IN2P3

²Université de Bordeaux

Directeur de stage : Emmanuel CHAUVEAU

Mots clés : neutrinos, SuperNEMO, scintillateur, photomultiplicateur, spectromètre à électrons

Le projet SuperNEMO a pour objectif d'étudier la radioactivité double béta sans émission de neutrinos ($\beta\beta0\nu$). Son existence prouverait que le neutrino est une particule de Majorana ($\nu=\bar{\nu}$). La détection des électrons (β) se fait en coïncidence par des modules optiques (OM), composés d'un scintillateur et d'un photomultiplicateur. Ce calorimètre est utilisé pour la première fois pour détecter les rayonnements gammas (γ) environnants (bruit de fond, ...) ainsi que ceux provenant d'une source de 60 Co placée entre deux OM, préalablement calibrés à l'aide d'un spectromètre à électron. Les expériences nous ont montré des résultats inattendus qui seraient en partie causés par le spectromètre mal étalonné. Des mesures ont alors été faites avec du 207 Bi, source β et γ . De récentes simulations optiques prévoient des différences entre les spectres β et γ . La confrontation des résultats aux simulations nous a permis de valider une partie de ces dernières.

Study of the response of the optical modules of the SuperNEMO's calorimeter to gamma radiation

Axel Pin^{1,2}

¹Centre d'Etudes Nucléaires de Bordeaux-Gradignan UMR5797, CNRS/IN2P3

²Université de Bordeaux

Internship director: Emmanuel CHAUVEAU

Keywords: neutrinos, SuperNEMO, scintillator, photomultiplier, electron spectrometer

The SuperNEMO experiment aims at studying the double beta radioactivity neutrinoless ($\beta\beta0\nu$). Its existence would prove that the neutrino is a Majorana particle ($\nu = \bar{\nu}$). The detection of the β is made with coincidence detection method by optical modules (OM), composed of a scintillator and a photomultiplier. This calorimeter is used for the first time for detecting the gamma (γ) radiation surrounding (background, ...) as well as those from a 60 Co source placed between two Oms, beforehand calibrated using an electron spectrometer. Experiments have shown unexpected results which might be partly caused by a wrong calibration of the spectrometer. Then, measurements are made with 207 Bi, source of β and γ . Comparing the results to simulations allowed us to validate a part of the latter.